lunes, 24 de noviembre de 2008

Integrantes

Andres felipe zambrano gomez codigo: 44 grado:10-011


luis alberto rodriguez garza codigo: 33 grado:10-01

lunes, 10 de noviembre de 2008

BIOLOGIA

DIVISION CELULAR

La división celular es la parte del ciclo celular en la que una célula inicial (llamada "madre") se divide en dos para formar dos células hijas. Gracias a la división celular se produce el crecimiento de los organismos pluricelulares con el crecimiento de los tejidos y la reproducción vegetativa en seres unicelulares.Los seres pluricelulares reemplazan su dotación celular gracias a la división celular y suele estar asociada a la diferenciación celular. En algunos animales la división celular se detiene en algún momento y las células acaban envejeciendo. Las células senescentes se deterioran y mueren debido al envejecimiento del cuerpo. Las células dejan de dividirse porque los teloneros se vuelven cada vez más cortos en cada división y no pueden proteger a los cromosomas.





MITOSIS

Es la forma más común de la división celular en las células eucariotas. Una célula que ha adquirido determinados parámetros o condiciones de tamaño, volumen, almacenamiento de energía, factores medioambientales, puede replicar totalmente su dotación de ADN y dividirse en dos células hijas, normalmente iguales. Ambas células serán diploides o haploide, dependiendo de la célula madre.
FASES
La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La interfase típica se divide en tres fases:
G1: Esta fase tiene lugar desde que la célula nace hasta que inicia la etapa S. Tiene lugar la síntesis de ARNm con la cosiguiente producción de proteinas.
S: Replicación del ADNn y síntesis de ARNm e histonas
G2: Síntesis de proteínas (las que constituirán los microtúbulos del haz mitótico.
Profase
Es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN) (que normalmente existe en forma de cromatina), con lo que se forman los cromosomas; y el desarrollo bipolar del huso mitótico. Uno de los hechos más tempranos de la profase en las células animales es la migración de dos pares de centriolos, previamente debe duplicarse el existente, hacia extremos opuestos de la célula. Se forma un huso acromático hecho de haces de microtúbulos, las fibras del huso. Los centriolos actúan como centros organizadores de microtúbulos, controlando la formación de esas fibras. En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear.
Prometa fase
La envoltura nuclear se ha desorganizado y el huso mitótico organizado. Los cromosomas han sido alcanzados por fibras del huso (microtúbulos).
Metafase
Durante esta fase, las cromàtidas hermanas, las cuales se encuentran conectadas a cada polo de la célula por los microtúbulos unidos a los centròmeros, comienzan a moverse continuamente, hasta que migra a la zona media de la célula o plano ecuatorial, en la que forman una estructura llamada placa ecuatorial.
Anafase
Es la fase más corta de la mitosis, en la cual los microtúbulos del huso rompen los centrómeros longitudinalmente, lo que da lugar a la separación de las cromátidas hermanas, las cuales se dirigen a polos opuestos.
Telofase
En la telofase el nuevo núcleo se organiza: se reconstituye la cromatina, adoptando forma helicoidal los cromosomas, aparece el nucléolo, y se reconstruye la eucariótica a partir del retículo endoplasmático.
MEIOSIS
es la división de una célula diploide en cuatro células haploide. Esta división celular se produce en organismos multicelulares para producir gametos haploide, que pueden fusionarse después para formar una célula diploide llamada zigoto en la fecundación.
Los seres pluricelulares reemplazan su dotación celular gracias a la división celular y suele estar asociada a la diferenciación celular. En algunos animales, la división celular se detiene en algún momento y las células acaban envejeciendo. Las células senescentes se deterioran y mueren, debido al envejecimiento del cuerpo. Las células dejan de dividirse porque los telómeros se vuelven cada vez más cortos en cada división y no pueden proteger a los cromosomas. Las células cancerosas son inmortales. Una enzima llamada telomerasa permite a estas células dividirse indefinidamente.

PROCESO CELULAR
Los pasos preparatorios que conducen a la meiosis son idénticos en patrón y nombre a la interfase del ciclo mitótico de la célula. La interfase se divide en tres fases:
Fase G1: caracterizado por el aumento de tamaño de célula debido a la fabricación acelerada de organuelos, proteínas, y otras materias celulares.
Fase S (síntesis): se replica el material genético, es decir, el ADN se replica dando origen a dos cadenas nuevas, unidas por el centrómero. Los cromosomas, que hasta el momento tenían una sola cromátida, ahora tienen dos. Se replica el 98% del ADN, el 2% restante queda sin replicar.
Fase G2: la célula continúa aumentando su biomasa.

La interfase es seguida inmediatamente por la meiosis I y II. Meiosis I consiste en la segregación de cada uno de los cromosomas homólogos, dividiendo posteriormente la célula diploide en dos células diploides pero con la mitad de cromosomas. La meiosis II consiste en desemparejar cada uno de las cromátidas del cromosoma, que se segregarán una a cada polo, con lo que tras una división se producen cuatro células haploides. Meiosis I y II están divididas en profase, metafase, anafase, y telofase, similares en propósito a sus subfases análogos en el ciclo mitótico de la célula. Por lo tanto, la meiosis abarca la interfase (G1, S, G2), la meiosis I (profase I, metafase I, anafase I, telofase I), y la meiosis II (profase II, metafase II, anafase II, telofase II).
Meiosis I
Profase I

La profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas, que son:
Leptoteno

La primera etapa de Profase I es la etapa del leptoteno, durante la cual los cromosomas individuales comienzan a condensar en filamentos largos dentro del núcleo. Cada cromosoma tiene un elemento axial, un armazón proteico que lo recorre a lo largo, y por el cual se ancla a la envuelta nuclear. A lo largo de los cromosomas van apareciendo unos pequeños engrosamientos denominados cromómeros.
Zigoteno

Los cromosomas homólogos comienzan a acercarse hasta quedar apareados en toda su longitud. Esto se conoce como sinapsis (unión) y el complejo resultante se conoce como bivalente o tétrada (nombre que prefieren los citogenetistas), donde los cromosomas homólogos (paternos y materno) se aparean, asociándose así cromátidas homólogas. Producto de la sinapsis, se forma una estructura observable solo con el microscopio electrónico, llamada complejo sinaptonémico, unas estructuras, generalmente esféricas, aunque en algunas especies pueden ser alargadas.

La disposición de los cromómeros a lo largo del cromosoma parece estar determinado genéticamente. Tal es así que incluso se utiliza la disposición de estos cromómeros para poder distinguir cada cromosoma durante la profase I meiótica. Además el eje proteico central pasa a formar los elementos laterales del complejo sinaptonémico, una estructura proteica con forma de escalera formada por dos elementos laterales y uno central que se van cerrando a modo de cremallera y que garantiza el perfecto apareamiento entre homólogos. En el apareamiento entre homólogos también está implicada la secuencia de genes de cada cromosoma, lo cual evita el apareamiento entre cromosomas no homólogos. Además durante el zigoteno concluye la replicación del ADN (2% restante) que recibe el nombre de zig-ADN.
Paquiteno

Una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes se produce el fenómeno de entrecruzamiento (crossing-over) en el cual las cromatidas homólogas no hermanas intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual.

La recombinación genética está mediada por la aparición entre los dos homólogos de una estructura proteica de 90 nm de diámetro llamada nódulo de recombinación. En él se encuentran las enzimas que median en el proceso de recombinación.

Durante esta fase se produce una pequeña síntesis de ADN, que probablemente está relacionada con fenómenos de reparación de ADN ligados al proceso de recombinación.
Diploteno

Los cromosomas continúan condensándose hasta que se pueden comenzar a observar las dos cromátidas de cada cromosoma. Además en este momento se pueden observar los lugares del cromosoma donde se ha producido la recombinación. Estas estructuras en forma de X reciben el nombre quiasmas. Cada quiasma se origina en un sitio de entrecruzamiento, lugar en el que anteriormente se rompieron dos cromatidas homólogas que intercambiaron material genético y se reunieron.

En este punto la meiosis puede sufrir una pausa, como ocurre en el caso de la formación de los óvulos humanos. Así, la línea germinal de los óvulos humanos sufre esta pausa hacia el séptimo mes del desarrollo embrionario y su proceso de meiosis no continuará hasta alcanzar la madurez sexual. A este estado de latencia se le denomina dictiotena.

Diacinesis

Esta etapa apenas se distingue del diploteno. Podemos observar los cromosomas algo más condensados y los quiasmas. El final de la diacinesis y por tanto de la profase I meiótica viene marcado por la rotura de la membrana nuclear. Durante toda la profase I continuó la síntesis de ARN en el núcleo. Al final de la diacinesis cesa la síntesis de ARN y desaparece el nucleolo.

Prometafase I

La membrana nuclear desaparece. Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse. Algunas veces las tétradas son visibles al microscopio. Las cromatidas hermanas continúan estrechamente alineadas en toda su longitud, pero los cromosomas homólogos ya no lo están y su centrómeros y cinetocoros encuentran separados entre sí.

Metafase I

Los cromosomas homólogos se alinean en el plano de ecuatorial. La orientación es al azar, con cada homologo paterno en un lado. Esto quiere decir que hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma. Los microtubulos del huso de cada centríolo se unen a sus respectivos cinetocoros.

Anafase I

Los quiasmas se separan. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno.

Telofase I

Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la cromatina. Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. Este proceso es breve en todos los organismos, pero en algunos generalmente no ocurre.
Meiosis II
Profase II
Profase Temprana II

Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles

Profase Tardía II

Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula

Metafase II

Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatidas se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.

Anafase II

Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma.

Telofase II

En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1 – Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2 - se intercambian segmentos de ADN entre los homólogos paternos y maternos durante el entrecruzamiento.

miércoles, 5 de noviembre de 2008

FUTBOL

La historia del fútbol asociación, conocido simplemente como fútbol, suele considerarse a partir de 1863, año de fundación de The Football Association, aunque sus orígenes, al igual que los de los demás códigos de fútbol, se pueden remontar varios siglos en el pasado, particularmente en las Islas Británicas durante la Edad Media.[1] [2] Si bien existían puntos en común entre diferentes juegos de pelota que se desarrollaron desde el siglo III a. C. y el fútbol actual,[1] el deporte tal como se lo conoce hoy tiene sus orígenes en las Islas Británicas.[2]
Los primeros códigos británicos que dieron origen al fútbol asociación se caracterizaban por su poca organización y violencia extrema.[3] No obstante, también existían otros códigos menos violentos y mejor organizados: quizás uno de los más conocidos fue el calcio florentino, deporte de equipo muy popular en Italia que tuvo incidencia en los códigos de algunas escuelas británicas.[4] La formación definitiva del fútbol asociación tuvo su momento culminante durante el Siglo XIX. En 1848 representantes de diferentes colegios ingleses se dieron cita en la Universidad de Cambridge para crear el código Cambridge, que funcionaría como base para la creación del reglamento del fútbol moderno.[5] Finalmente en 1863 en Londres se oficializaron las primeras reglas del fútbol asociación.[6]
Desde entonces el fútbol ha tenido un crecimiento constante, hasta llegar a ser el deporte más popular del mundo con unas 270 millones de personas involucradas.[7] Con la realización de la primera reunión de la International Football Association Board en 1886 y la fundación de la FIFA en 1904, el deporte se ha expandido hasta llegar a todos los rincones del mundo. A partir de 1930 se comenzaría a disputar la Copa Mundial de Fútbol, que se convertiría en el evento deportivo con mayor audiencia del planeta